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Abstract     This paper investigates the market efficiency of S&P CNX Nifty 
equity index options for at-the-money non-overlapping monthly implied volatilities. 
Under the rational expectation hypothesis, call and put implied volatilities are 
calculated using Black and Scholes option pricing-model for the period June, 2001 
to May, 2011. The ordinary least squares estimation clearly shows that implied 
volatility is the best estimate of future realized volatility. An empirical result on 
Granger causality shows that there is only unidirectional causality prevails in the 
Indian options market. Granger causality test (Sims and Geweke) indicates that call 
and put implied volatility causes the realized volatility but realized volatility cannot 
cause implied volatility. Granger causality test also confirms that for Indian options 
market historical volatility does not subsume useful information what already 
contained in the option price (i.e. implied volatility). The study concludes that 
volatility estimates based on the option’s price are the best estimate for the future 
volatility and useful in the pricing of derivatives and portfolio-risk-management.
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Introduction

In the financial economics, the concept of volatility is very critical. Some author 
defines it as the measure of uncertainty of the financial assets or instruments traded 
in the capital market. In simple words it is the simple standard deviation of the 
returns, realized on a particular financial instrument for a given set of time. Why 
volatility should be studied? It is a matter of interest among the investors, financial 
institutions, government agency and practitioners. Generally investor analyzes the 
volatility for risk management, portfolio selection, valuation purpose, for designing 
trading strategies (such as volatility arbitrage). After the noble work of Black and 
Scholes in 1973 option pricing model for CBOE volatility study become more 
systematic for academics and practitioners. Investors generally rely on the estimates 
of volatility such as historical volatility also known as realized volatility, implied 
volatility. Historical volatility is directly observable and can be calculated daily, 
monthly or annually for the given financial instruments, while implied volatility 
cannot be observed directly, it can be inverted from the option prices, based on the 
Options pricing model.

In the study of superiority of historical and implied volatility (Christensen 
and Prabhala, 1998; Hansen, 2001; Kumar, 2008; Panda et. al. 2008 and Li and 
Yang, 2009)  it is found that implied volatility outperforms the historical volatility. 
According to mean-reversion principle (Mandelbrot and Hudson, 2004) historical 
volatility forecast the future volatility under rational expectation that the past 
tends to be repeated. Historical volatility is the unconditional volatility forecast 
which ignores the most recent publicly available information. Therefore, historical 
volatility does not reveal the true volatility. Under the efficient market hypothesis 
it is found that implied volatility contains all the information that contained in the 
historical volatility. This study well explained by the superiority of implied volatility 
over the historical volatility by Bodie and Merton (1995).

Implied volatility is a transformation of a standard European option1 price. 
It is the volatility that, when input into the Black-Scholes option pricing model 
(BSOPM), yields the price of the option. In other words, it is the constant volatility 
of the underlying process that is implicit in the price of the option. For this reason, 
some authors refer to implied volatility as implicit volatility. Implied volatility is an 
alternative way to estimate volatility to be inferred from the options market, i.e. the 
current volatility of a stock as reflected by its option price. 

The innovative work of Black and Scholes (1973) in the line of option pricing 
has made possible to study implied volatility and it became most popular among 
the academician and practitioners. According to Black and Scholes option pricing 
model if the market is efficient, then implied volatility should be an unbiased and 
1 European style options cannot be exercised before its maturity date. For the present study OPTIDX 
options of CNX Nifty index are of European style and cash settled. 
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efficient predictor of future ex –post realized volatility. Under the assumption of 
market efficiency and Black and Scholes option pricing model, it gives the expected 
volatility known as implied volatility, this implied volatility should be an unbiased 
and efficient predictor of future ex –post realized return volatility. Implied volatility 
should subsume the information contained in all other variable used to explain 
future realized volatility.

The efficiency of implied volatility as predictor of realized return volatility was 
discussed at great extent in the last three decades. When looking on the literature 
still some inconclusive evidence are present that makes this topic more contentious. 
There are some groups of academician and practitioners (Latané and Rendleman, 
1976; Chiras and Manaster, 1978; Beckers, 1981; Day and Lewis, 1992; Jorion, 
1995; Christensen and Prabhala, 1998; Hansen, 2001; Christensen and Hansen, 
2002; Szakmary et al., 2003; Corrado and Miller, 2005; Kumar, 2008; Panda et 
al., 2008 and Li and Yang, 2009) are in the favor of implied volatility as a best 
predictor of future realized return volatility. While on the other hand some group of 
scholars they are little suspicious about market efficiency and the predictive power 
of implied volatility. Lamoureux and Lastrapes (1993), Canina and Figlewski 
(1993), Gwilym and Buckle (1999) and Filis (2009) gave mixed conclusion on the 
information content of option prices and the predictive power of implied volatility 
and the historical volatility. 

However, some group of scholars Jackwerth and Rubinstein (1996), Chance 
(2003) and Koopman, et al. (2005) strongly oppose on the information content 
of implied volatility, they observed that there is no correlation between implied 
and realized volatility. The empirical work of these people showed that historical 
volatility outperforms the future realized return volatility, and historical return 
volatility was the best predictor of future ex –post realized return volatility. 

The empirical work is presented as: Firstly, non-parametric test that gives the 
elementary results on market efficiency of implied volatility and applicability of 
BSOPM for OPTIDX options market. Secondly, by OLS estimation that explains 
how implied volatility explains the future realized volatility. Thirdly, by causality 
estimation using three approaches to Granger Causality Granger (1969), Sims 
(1972), Geweke (1983) this technique has been applied to know the direction of 
causality for implied and realized volatility.

The main purpose of this paper is to examine the market efficiency of S&P 
CNX Nifty index options and predictive power of implied volatility, implied in the 
options premium of OPTIDX options. In this empirical work it is found that call 
and put implied volatility does contain information about S&P CNX Nifty index 
options as best predictor of future ex-post realized volatility. An empirical result on 
Granger Causality shows that there is only unidirectional causality prevails in the 
Indian options market. Granger Causality test (Sims and Geweke ) indicates that 
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call and put implied volatility causes the realized volatility but realized volatility 
cannot cause implied volatility. Granger Causality test also confirm that for Indian 
options market historical volatility does not subsumes useful information what 
already contained in the Options price. 

This paper is written as follows: Section “Data and sampling procedure” deals 
with data sources and sampling procedure, Section “Variable definition” explains 
how variables are calculated, Section “Methodology and empirical results” explain 
methodology and empirical results. Section “Conclusion” ends with conclusion.

Data and sampling procedure

The present study is based on the index options for S&P CNX Nifty. NSE introduced 
trading in index options as on June 4, 2001. The options contracts are of European 
type and cash settled. The study period starts from June, 2001 to May, 2011, which 
covers the entire period of introduction of options on derivative segment F&O’s 
of NSE. OPTIDX S&P CNX Nifty index options are based on the popular market 
benchmarks S&P CNX Nifty index. Nifty index consist of 50 highly traded stocks 
and the representation of all industries. The instrument type is OPTIDX and the 
underlying asset is Nifty. S&P CNX Nifty index options contracts have three 
consecutive monthly contracts, additionally, three quarterly month of the cycle 
March/ June/September/December and five following semi-annual months of 
the cycle January/December. So that at any point in time there would be options 
contracts with at least 3 years tenure available. On expiration of the near month 
contract new contracts (monthly/quarterly/half yearly) are introduced at new strikes 
for both call and put options on the trading day following the expiry of the near 
month contract. Nifty options contracts expire on the last Thursday of the expiry 
month. If the last Thursday is a trading holiday, the contracts expire on the previous 
trading day.

Theoretical  prices are calculated by using the BSOPM: The Black and Scholes 
model for option pricing gives the price of a call and put option as follows:-

The variables are:-S = Index2 price; X = strike price; (T – t) = time remaining until 
expiration, expressed as a percent of a year; r = current continuously compounded 

2 CNX Nifty index is net of the present value of promised dividend.
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risk-free interest rate (MIBOR).σ = annual volatility of stock price (the standard 
deviation of the short-term returns over one year); ln = natural logarithm; N(x) = 
standard normal cumulative distribution function; e = 2.718282. Implied volatility 
is inverted from the BSOPM under the assumptions that Indian options market is 
efficient and the options pricing model is valid for options on equity index.

The sampling procedure has been used and different as comparing to the 
previous study on Indian context. For any options (call/put) to be included in the 
sample it should be:(a)Traded on business day close to but after on expiry date, 
and have expiration on the next expiry date. (b) Close to at-the-money i.e. (St/Xt) 
Є (0.95, 1.05) where St is the index level and Xt is the strike price of the option. 
(c)Traded actively i.e. have relatively high trading volume. Here criterion (a) was 
used to avoid the overlapping of data. S&P CNX Nifty index options of NSE are of 
European style they are expiring on the last Thursday of the month. Every month 
three contracts are introduced near month, two month, and far month, for the present 
study only near month (one month) contracts are taken into account for sampling 
purpose. Therefore every year there will be 12 non-overlapping samples for call and 
put options. Criterion (b) was used because the option pricing model for calculating 
implied volatility was more accurate for close to ATM options. Thus, implied 
volatility obtained from these options may result into less measurement errors. 
ATM options may have been thinly traded and their prices would not necessarily 
reflect market price, thus Criterion (c) was required. By taking into account the 
above three criterion sampling is done for the S&P CNX Nifty index options for the 
period June, 2001 to May, 2011.

Let t be the business day that immediately follows an expiry date. On day t , 
the closing prices of (Ct and Pt) and strikes (Xt,c and Xt,p) were recorded for a call 
option and put option, each of which expired on the next expiry date t + 1 and 
had highest trading volume among the close to ATM options. The corresponding 
underlying index level St was also recorded and one month Mumbai Inter Bank 
Offered Rate (MIBOR) from NSE debt segment download as the proxy of risk free 
rate of interest. The sampling process repeated upto 120 monthly observation for 
each call and put options. 

Variable definition

In this section variable definitions and practical issues are discussed:
Time to Maturity (T –t): In practice, the time for paying interest is based on 

calendar days while the time for the life of an options is based on trading days. In 
this study the life of an option was about one month ranging from 27 to 34 days 
(about 18 to 23 trading days). For the present study one month MIBOR is taken as 
risk free rate of interest. Here, (T – t) indicates days to expiration was measured by 
number of days from the t business day and the day immediately prior to expiry day 
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divided by the number of calendar days per year, that was taken as 365 i.e. ( T – t) 
/ 365. In this study the expiry day is not taken into account because all contracts 
expire on the day of expiration and the cash settled.

Implied volatility (σCIV , t and σPIV , t) : Implied volatility is a transformation of a 
standard European option price. It is the volatility that, when input into the BSOPM 
formula, yields the price of the option. In other words, it is the constant volatility 
of the underlying process that is implicit in the price of the option. For this reason 
some authors refer to implied volatility as implicit volatility. Implied volatility is 
an alternative way to estimate volatility to be inferred from the options market, i.e. 
the current volatility of a stock as reflected by its option price. In other words, take 
the market price of the option, then invert the option pricing formula to determine 
the volatility implied by the traders in the market. For computing implied volatility 
commonly BSOPM model is used. Options pricing models cannot be inverted very 
easily, so implied volatility is calculated numerically. There are number of methods 
available for options pricing. Implied volatility estimated using BSOPM with 
method of Bisection as below.

 
Volatility estimate =        (2)

Where σL and σH are the low and high volatility values, CL and CH are the 
corresponding options values and C is the market price of the options

Average implied volatility: (σAVRIV i,  t) to use the all the months in the present data 
set, the  new implied volatility measures are constructed (Hansen, 2001) as average 
of both the call and put implied volatility σAVRIV 1,  t, σAVRIV 2,  t, and σAVRIV 3,  t defined as 
follows: [ i = 1, 2, 3]

             (3)

                 (4)   
    
                 (5)

Where, the implied volatility measures σAVRIV 1,  t is constructed so that σ2
AVRIV1,  t  is 

the average of the implied variances, while σAVRIV 2,  t is an average of the implied 
volatilities. The third measure is obtained by averaging the natural logarithm of 
the implied volatilities. For empirical estimation only Equation (5) is taken into 
account.
Realized volatility: (σRV, t ):  Shu and Zhang (2003) suggested that by constructing 
more suitable measure of realized volatility, the predictive power of implied 
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volatility can be improved and also minimized the measurement error. Realized 
volatility is calculated as the standard deviation of the daily index return during the 
remaining life of the option, the period covered by the implied volatility. Since it is 
assumed that spot prices are log normally distributed, returns have been calculated 
according to their log ratios in prices and are therefore continuously compounded. 
Let n be the number of trading days before the expiration of an option, Si be the 
index level, and Ri be the log –return on the ith day during the remaining life of the 
option. Then realized volatility defined as follows :

  Ri = ln (Si/Si-1) where i = 1,2,3,....n

where 

[Denotes the mean of daily log return of the index at time t]
Historical volatility: (σHV, t-1) In previous studies, historical volatility at time t 
was taken often defined as realized volatility at time t-1. In this study, the time to 
maturity ranged from 27 to 34 days (about 18 to 23 trading days). If the measurement 
followed as above, the information contained in the gap between two consecutive 
contracts would have been ignored (Hansen, 2001). It is often held that more recent 
data contains more relevant information about the future. Thus for the present study 
different definition of historical volatility is used as followed by (Hansen, 2001; 
Christensen and Hansen, 2002 and Li and Yang, 2009) for a given contract with T 
days to maturity at time t. the corresponding historical volatility was calculated by 
using the daily return of the period going back T days from time t. Then historical 
volatility defined as follows:

     (7)

[Denotes the mean of daily log return of the index at time t-1]
Methodology and empirical results

In this section we develop an empirical model to determine the direction of causality 
using Granger models. In particular, a non-parametric test is also performed to 

(6)
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check the market efficiency of S&P CNX Nifty index options.  

Descriptive Statistics 

Table 1 shows the descriptive statistics for multivariate time series data. It can be seen 
clearly that the average realized volatility (σRV, t  σHV, t-1 ) they are smaller than the average put 
implied volatility (σPIV,  t  ) , the same is found in case of (Panda et al. 2008; Hansen, 2001; 
Li and Yang, 2009). It may be due to implementation of portfolio insurance as suggested 
by Harvey and Whaley (1991). But by looking at the call implied volatility (σCIV , t) it is less 
than the all realized volatility that indicate investors least prefer the call index options for 
their portfolio insurance pertaining to the Indian derivative market. There is no significant 
difference between all other three averages implied volatility measures, they are found to 
be higher than all realized volatility.

Table 1 Descriptive statistics

Statistic(%) σCIV, t σPIV,t σRV,t σHV, t-1 σAVRIV 1,t σAVRIV 2,t σAVRIV 3,t

Mean 21 28 23 23 25 24 24
Maximum 66 78 72 77 73 72 72
Minimum 5 10 9 8 10 10 9
Std. Dev. 9 10 13 13 9 9 10

The maximum (minimum) value of put implied volatility is 78% (10%) while for call 
the value is 66% (5%). On the comparison of standard deviation reported in the fourth 
line for all volatility series; both realized volatility series are found to be more volatile as 
comparing to all other ex –ante volatility series. But, as per the assumption of BSOPM the 
annualized standard deviation should be constant. 

Non-parametric test for market efficiency 

To test the market efficiency of OPTIDX (options on index) index options as the 
predictor of future realized return volatility, a non-parametric test mechanism 
applied in the following way. Wilcoxon signed rank test is the non-parametric 
paired data testing procedure. Testing the null hypothesis that the median scores of 
the two time series population is same. For this reason, this test is applied in two 
ways: (1) if the market is efficient then; the pairs of non-overlapping at-the-money 
monthly implied volatility and realized volatility should be same. (2) Under the 
assumption of constant volatility of BSOPM call and put implied volatility should 
be same. Violation of this assumption violates the put-call parity theorem for option 
pricing model. In BSOPM annualized volatility is used to price both call and put 
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options, therefore implied volatility obtained from market price of call and put 
options should be same.
To test the above two hypothesis Wilcoxon W-statistic is calculated as follows: The 
Wilcoxon  test statistic W is the sum of the all positive ranks.

                  (8)

E(W-statistic) = μW = T(T+1)/4              (9)
Var(W- statistic)= σ2

W =T(T+1)(2T+1)/24           (10)
Standardized Z-test statistic defined as
                (11)

The critical valued of Z at 1% ,5% and 10% level of significance are respectively 
2.58, 1.96 and 1.64.

In Table 2 variant of null tested using Wilcoxon signed rank test. In Table 2 first 
two lines shows the test of significance of market efficiency of OPTIDX CNX Nifty 
Index options. If the options market is efficient and BSOPM good holds then all the 
call and put implied volatility should conform to the realized volatility. It is seen 
clearly from Table 2, first line null is accepted, as the p-value is not significant. It 
signifies that call implied volatility best subsumes the information regarding future 
realized return volatility. However, at the same time put implied volatility does 
not conform to the realized volatility. It indicates that put implied volatility does 
not contain any information about future volatility. A test shown in the third line is 
the test of superiority of historical volatility against implied volatility as the best 
predictor of future volatility. It is seen that test statistic is insignificant, therefore, 
historical volatility subsume the information about the future realized volatility. At 
the same time, it raises the question regarding the market efficiency of OPTIDX 
market and applicability of BSOPM.
In the fourth line of Table 2, as per BSOPM an annualized volatility is used to 
price both the call and put options, therefore call and put implied volatility obtained 
from call and put price of options should be same. But it is seen from the test 
null is not accepted, call and put implied volatility are not identical. This is the 
violation of assumption of BSOPM. This indicates the possibility of mispricing 
of options (Varma, 2002) in the Indian derivative market. In Table 2 last line is 
the test of average implied volatility against realized volatility that also found to 
be significant, we cannot accept the null that average implied volatility is the best 
estimate of future volatility. To obtain more robust result on the market efficiency 
we employ the OLS and Granger Causality method as follows.
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Table  2 Wilcoxon signed rank test
Null W-statistic Z
Ho: Median difference between log realized volatility and 
log call implied volatility is same.

W+ =3972 0.894

Null W-statistic Z
Ha: Median difference between log realized volatility and 
log call implied volatility is not same.

W-  = 3288 (0.371)

Ho: Median difference between log realized volatility and 
log put implied volatility is same.

W+ = 1190 -6.388

Ha: Median difference between log realized volatility and 
log put implied volatility is not same

W-  = 6070 (0.000)*

Ho: Median difference between log realized volatility and 
log historical implied volatility is same.

W+ = 3539 -0.237

Ha: Median difference between log realized volatility and 
log historical implied volatility is not same

W-  = 3721 (0.812)

Ho: Median difference between log call implied volatility 
and log put implied volatility is same.

W+ = 116 -9.201

Ha: Median difference between log call implied volatility 
and log put implied volatility is not same

W-  =  7144 (0.000)*

Ho: Median difference between log realized volatility and 
log average implied volatility is same.

W+ = 1991 -4.291

Ha: Median difference between log realized volatility and 
log average implied volatility is not same

W-  = 5269 (0.000)*

*1%, ** 5% and ***10% Significant, Note: value in the square bracket shows the p-value.

Simple OLS estimation 
This estimation gives the elementary results on the market efficiency of implied 
volatility as the best forecast of the future realized return volatility. This is based on 
the traditional measures call and put implied volatility. The following specification 
has been used for the OLS estimation:

σRV,t = α0 + αcσCIV,t+ αpσPIV,t+ αHVσHV,t-1+et               (12)

Similarly,

σRV,t = α0 + αcσCIV,t+ αiσAVRIV,t+et                         (13)

Table  3 OLS estimation 
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Dependent                        Independent variable Other Stat             Test of Residual
Variable Intercept lnσCIV,t lnσPIV, 

t
lnσHV,t-1 F-stat LM-test JB-stat White 

test
lnσRV,t -0.466 0.675

[-3.537]* [8.63]* 0.38 74.58* 0.61# 9.86* 1.53

{0.001} {0.000} {0.000} {0.826} {0.007} {0.46}

lnσRV,t -0.462 0.822

[-3.471* [8.582]* 0.38 73.66 0.915# 13.19* 12.23*

{0.000} {0.000} {0.000} {0.535} {0.001} {0.00}

lnσRV,t -0.723 0.535

[-5.835]* [7.105]* 0.29 50.49* 1.211# 14.52* 0.249

{0.000} {0.000} {0.000) {0.285} {0.000} {0.88}

lnσRV,t -0.415 0.516 0.197

[-3.119]* [4.526]* [1.939]*** 0.40 40.04* 0.458# 12.42* 2.646

{0.002} {0.000} {0.055} {0.000} {0.935} {0.002} {0.75}

lnσRV,t -0.437 0.654 0.159

[-3.272]* [4.285]* [1.412] 0.38 38.14* 0.770# 14.14* 14.99

{0.001} {0.000} {0.160} {0.000) {0.679} {0.000} {0.01}

lnσRV,t -0.326 0.363 0.411 0.061

[-2.409]** [2.857]* [2.401]* [0.529] 0.42 29.70* 0.602# 14.27* 17.45

{0.017} {0.005} {0.017} {0.597} {0.000} {0.836} {0.000} {0.04}

lnσRV,t -0.328 0.384 0.456 0.43 44.69* 0.616# 13.84* 14.32

[-2.436]** [3.172]* [3.075]* {0.000} {0.824} {0.001} {0.013}

{0.016} {0.002} {0.002}
[Table 3 shows OLS results of implied, historical and realized volatility based non-overlapping 
monthly at-the-money samples. LM-stat Ho: “No Serial Correlation” is obtained using Breusch-
Godfrey Serial Correlation LM Test follows Χ2(12)distribution. JB-stat Ho: “Residuals are normally 
distributed” follows Χ2(2) distribution. White-stat Ho: “ No  Heteroskedasticity”  using white test 
that also follows Χ2distribution. A value shown in the square bracket shows the t –statistic and 
corresponding p-value is shown in curly bracket. *1%, **5%, ***10%, Significant]

It is seen from the first line of the Table 3, the coefficient of call implied volatility 
for log-transformed series 0.675 and it is statistically significant, thus call implied 
volatility does contain information about the realized volatility. This primary result 
provides strong base for the options market efficiency and information content of 
implied volatility for the OPTIDX S&P CNX Nifty index option and also supports 
the past literature (Christensen and Prabhala, 1998, Hansen, 2001 and Li and Yang, 
2009). But, as per hypothesis that αo = 0 and αc = 1, this results are different from 
it. The slope of call implied volatility is less than unity and the intercept is different 
from zero this indicates that call implied volatility is a biased estimator of future 
realized return volatility. 

It is of inquisitiveness to know the predictive power of put implied volatility; 
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therefore univariate regression is performed in the second line of Table 3. For log-
transformed value of put implied volatility slope coefficient found to be 0.822 and 
statistically significant. While comparing the two slope coefficient of call and put 
implied volatility, the coefficient of put implied is greater than the call implied 
volatility, this signifies that for Nifty Index option put implied volatility is the best 
forecast of the future volatility than call implied volatility. Put implied volatility is a 
biased estimate of future ex-post realized volatility because of the slope is less than 
one and intercept is non-zero.

By estimating a univariate regression with historical volatility as shown in third 
line of Table 3 it is analyzed that the slope coefficient for log-transformed series is 
0.535 and found to be statistically significant. Historical volatility appears to contain 
additional information about the future realized return volatility, at the same time 
as intercept is not zero and significant. It signifies that historical volatility is biased 
estimate of subsequent realized volatility. But while comparing the explanatory 
power of call/put implied volatility with historical volatility it is too low 0.29 as in 
case of first two regressions adjusted R2

 reported in Table 3. The possible reason for 
additional information content of historical volatility may be the fact that historical 
volatility does contain more information beyond that in call/put implied volatility. 
One more contradictory conclusion come out that it violates the joint hypothesis of 
market efficiency and applicability of BSOPM. 
It is essential to compare the call implied volatility with historical volatility; therefore 
some more regression shown in the fourth line of Table 3. In multiple regression 
the slope coefficient of call and historical volatility for log-transformed series is 
estimated respectively 0.516 and 0.197 and found to be statistically significant, 
still call implied volatility is more powerful than historical volatility as a predictor 
of future realized volatility. For univariate regression the adjusted R2 was 0.38 
while including historical volatility as an additional regressor adjusted R2 increases 
0.40, this signifies that for multiple regression; model remain less miss-specified 
and there is no problem of autocorrelation and heteroskedasticity. By estimating 
a regression of put implied volatility with historical volatility, the coefficient of 
log-transformed series found to be respectively 0.654 and 0.159 and statistically 
significant. In this multiple regression put implied volatility appears significant as 
the forecast realized volatility while historical volatility found to be insignificant. 
This indicates that put implied volatility does contain more information what already 
contained in the historical volatility. In the sixth line of Table 3 multiple regressions 
by taking call/put and historical volatility together as regressors. The slope of these 
three regressors found to be respectively 0.363, 0.411 and 0.061. In this regression 
call and put implied volatility appears to be positive significant as best forecast of 
future realized volatility. One interesting fact is that historical volatility does not 
appear significantly, that signifies historical volatility does not contain additional 
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information what already contained in the options price. 
One more interesting outcome of the study is that the Indian options market are 

efficient and call and put implied volatility are the best estimate of future volatility. 
By estimating a one more regression only with call and put implied volatility 
(reported in the last line of Table 3). The slope found to be respectively 0.384 and 
0.455 still put implied volatility dominates the call implied volatility as a predictor 
of future realized volatility. For the present study it is strongly suggested for the 
Indian OPTIDX S&P CNX Nifty index options market is an efficient market and 
historical volatility does not subsume any information about future volatility what 
already contained in the implied volatility3.

Granger Causality

Testing for the causality between two variables implies the specification of the 
dynamic relationship which links them. The test of causality between two economic 
variables it was proposed by Granger (1969) and extended by Sims (1972). This 
test is useful in determining a variable y can help in predicting another variable. 
If it cannot, then we say that y does not caused x and vice versa. One application 
of ad-hoc distributed lag models is to test the direction of causality in economic 
relationship. Such a test is useful when we know that two variables are related 
but we don’t know which variable causes the other to move. Granger causality 
is a circumstance in which one time series variable consistently and predictably 
changes before another variable does (Granger, 1969). If one variable “causes” the 
other to change but we can be fairly sure that the opposite is not the case. Granger 
causality is important because it allows us to analyze which variable precedes or 
leads the other and such leading variables are extremely useful for forecasting 
purposes. Therefore, Granger causality allows us to prove economic causality in 
any rigorous way. The most commonly used Granger causality test are Granger 
(1969), Sims (1972) and Geweke . (1983) is discussed below4:
Granger Direct Causality Method

As the name implies Granger Causality is performed by taking lagged values of 
regressor and lagged value of dependent variable:

          (13)

          (14)
To estimate Equation (14) & (15) for the given lag length n is estimated using OLS 
3 The results on combined implied volatility are identical with previous regressions.  
4 For more detailed methodological recent application of Granger causality see Nair (2012) and 
Aslan, (2012).
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and F-test performed to test the null γj=0

                 (15)        
Where URSS stand for Unrestricted Residuals Sum of Squares due to equation (14) 
& (15) and RRSS stand for Restricted Residuals Sum of Squares due to restriction 
on γj=0. T is the size of sample and q is the lag length of σIV,t-i and p is the lag length 
of σRV,t-i (p & q are the leg length). If F-stat is greater than critical value then for both 
the Equation (14) & (15) , then σIV, t-1=> σRV,t => σIV,t-i (i.e. σIV,t-i <=> σRV,t).
Granger Causality Sims Method

Sims model for causality is based on the past and future values of the regressor.

              (17)(18)
According to Sims causality model only current and future values of regressor can 
cause the dependent variable. Here null δj=0 is tested using F-statistic. The past 
literatures on empirical study of Sims model suggest that residual in the model are 
highly autocorrelated. The Geweke et.al. model (1983) is one of the modifications 
of Sims model for the correction of autocorrelation by taking lagged value of 
dependent variable.

Granger Causality Geweke et.al Method

                     (19)(20)           
 

The null is tested for θj=0 for σIV,t ≠=> σRV,t against σIV,t => σRV,t and vice versa.  In 
Geweke model when lagged dependent variable included as regeressor it leads to 
fall in degrees of freedom and possible misspecification.

Before testing for the causality optimal number of lags should be estimated. 
Here optimal number of lag suggested is one using AIC and SBIC criterion5.

The empirical results on Granger causality are described in Table 4 and 5. An 
attempt is made to tests the causality relationship between implied and realized 
volatility. Time series variable under Causality analysis are call implied volatility, 

5 Due to space constraint results of Lag selection has been not reported here, results can be 
available on request.
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put implied volatility, and average implied volatility (combined call and put implied 
volatility), realized volatility and historical volatility. The main reason behind doing 
Causality test is to analyze the direction of causality among the ex –ante and ex –
post volatility. 

For Causality test various models are specified (Equation 14-15, 17-18 and 
19-20) and estimated using OLS regression. Estimated residuals are tested for 
autocorrelation, normality and heteroskedasticity. It is found that there are no 
significant problem of autocorrelation and heteroskedasticity. Therefore, the 
coefficient estimated for various models are consistent and efficient. However, 
in Sims model there is a problem of autocorrelation, therefore, Geweke model is 
adopted. 

Table  4  Ganger causality using Granger Model
Null Hypothesis F-Statistic Q-Stat Diagnostic Test of Residual Inference

LM-stat JB-stat White-
stat

CIV does not Gran-
ger Causes RV

4.66** 12.23 14.89 11.68 2.72
[0.033] [0.427] [0.247] [0.003] [0.743] CIV

RV does not Gran-
ger Causes CIV

46.31* 8.18 8.27 259.00 3.59  RV
[0.000] [0.771] [0.764] [0.000] [0.609]

PIV does not Gran-
ger Causes RV

3.16*** 10.44 13.16 12.43 2.94
[0.078] [0.577] [0.358] [0.002] [0.709] PIV

RV does not Gran-
ger Causes PIV

70.28* 20.08 17.56 2.14 12.76  RV
[0.000] [0.066] [0.129] [0.343] [0.026]

AVRIV does not 
Granger Causes RV

4.85** 11.76 13.97 12.18 4.04
[0.030] [0.465] [0.0303] [0.002] [0.543] AVRIV

RV does not Gran-
ger Causes AVRIV

75.61* 20.10 18.57 0.03 17.04  RV
[0.000] [0.065] [0.010] [0.985] [0.004]

HV does not Gran-
ger Causes RV

2.38 10.60 10.80 12.54 2.52 HV
[0.125] [0.563] [0.546] [0.002] [0.774] RV

RV does not Gran-
ger Causes HV

3443.17* 9.99 11.35 44.77 4.32 RV
[0.000] [0.616] [0.499] [0.000] [0.505]  HV

PIV does not Gran-
ger Causes CIV

10.37* 8.67 12.94 149.12 14.24 PIV
[0.002] [0.731] [0.374] [0.000] [0.014] CIV

CIV does not Gran-
ger Causes PIV

2.76 16.56 18.20 29.98 11.41 CIV 
[0.099] [0.167] [0.109] [0.000] [0.043] PIV
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Null Hypothesis F-Statistic Q-Stat Diagnostic Test of Residual Inference
LM-stat JB-stat White-

stat
HV does not Gran-
ger Causes CIV

2.04 10.37 11.54 142.13 1.96 HV
[0.155] [0.584] [0.483] [0.000] [0.854] CIV

CIV does not Gran-
ger Causes HV

17.67* 5.44 6.3 15.28 2.50 CIV
[0.000] [0.942] [0.900] [0.000] [0.776] HV

HV does not Gran-
ger Causes PIV

0.08 16.36 17.47 35.76 15.53 HV
[0.772] [0.175] [0.133] [0.000] [0.008] PIV

PIV does not Gran-
ger Causes HV

16.91* 9.38 9.02 34.15 13.80 PIV
[0.000] [0.670] [0.701] [0.000] [0.017] HV

HV does not Gran-
ger Causes AVRIV

0.42 21.73 22.30 27.85 7.65 HV
[0.159] [0.041] [0.034] [0.000] [0.176] AVRIV

AVRIV does not 
Granger Causes HV

24.59* 8.81 8.03 35.49 8.40 AVRIV
[0.000] [0.719] [0.782] [0.000] [0.135] HV

[Table 4 reports results on Ganger causality using Granger Model. F-stat Ho :___”Does Not 
Granger Causes”____, .The Values in square bracket shows p-value Q-stat  Ho: “Residuals are 
white Noise”, is obtained using  Box-Pierces  test statistics follows Χ2(12) distribution. LM-stat 
Ho: “No Serial Correlation” is obtained using Breusch-Godfrey Serial Correlation LM Test follows 
Χ2(12)distribution. JB-stat Ho: “Residuals are normally distributed” follows Χ2(2) distribution. 
White-stat Ho: “ No Heteroskedasticity”  using white test that also follows Χ2distribution.   Implies 
unidirectional causality;   Implies does not causes;   Implies bi-directional causality. {*1%, **5%,*** 
10%, significant,}]

Table 5 Ganger causality using Geweke Model (Correcting for the Autocorrelation)
Null Hypothesis F-Stati-

stic
Q-Stat Diagnostic Test of Residual Inference

LM-stat JB-stat White-
stat

CIV does not Gran-
ger Causes RV

42.62* 6.29 7.05 6.30 17.20 CIV
[0.000] [0.901] [0.854 [0.043] [0.245] RV

RV does not Gran-
ger Causes CIV

0.33 9.08 10.33 280.07 6.89 RV
[0.570] [0.696] [0.587] [0.000] [0.939] CIV

PIV does not Gran-
ger Causes RV

75.52* 12.70 13.23 0.11 26.52 PIV
[0.000] [0.391] [0.353] [0.947] [0.022] RV

RV does not Gran-
ger Causes PIV

0.0009 19.26 14.68 15.80 34.14 RV
[0.976] [0.082] [0.259] [0.000] [0.002] PIV

AVRIV does not 
Granger Causes RV

82.24* 9.99 11.26 0.64 22.14 AVRIV
[0.000] [0.617] [0.506] [0.727] [0.076] RV
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Null Hypothesis F-Stati-
stic

Q-Stat Diagnostic Test of Residual Inference
LM-stat JB-stat White-

stat
RV does not Gran-
ger Causes AVRIV

0.08 24.12 25.66 9.64 34.23 RV
[0.774] [0.020] [0.012] [0.008] [0.002] AVRIV

PIV does not Gran-
ger Causes CIV

1.25 10.61 11.45 517.86 26.64 PIV
[0.266] [0.562] [0.490] [0.000] [0.021] CIV

CIV does not Gran-
ger Causes PIV

3.56 15.00 18.59 4.43 55.33 CIV
[0.062] [0.242] [0.099] [0.109] [0.000] PIV

[Table 5 reports results on Ganger causality using Geweke Model. F-stat Ho :___”Does Not 
Granger Causes”____, .The Values in square bracket shows p-value Q-stat  Ho: “Residuals are 
white Noise”, is obtained using  Box-Pierces  test statistics follows Χ2(12) distribution. LM-stat 
Ho: “No Serial Correlation” is obtained using Breusch-Godfrey Serial Correlation LM Test follows 
Χ2(12)distribution. JB-stat Ho: “Residuals are normally distributed” follows Χ2(2) distribution. 
White-stat Ho: “ No Heteroskedasticity”  using white test that also follows Χ2distribution.   Implies 
unidirectional causality;   Implies does not causes;   Implies bi-directional causality. {*1%, **5%,*** 
10%, significant,}]

In Table 4 results on Granger causality are reported using Grange (1969) model. 
A variant of null hypotheses are tested for the possible rejection based F-statistic. 
The first line of the Table 4 F-stat signifies that both null are rejected. This implies 
that call implied volatility Granger Causes the realized volatility. Similarly, realized 
volatility also Granger Causes call implied volatility, this indicates the bi-directional 
Causality between call implied volatility and realized volatility. The same is true 
for put implied volatility shown in the second line of the Table 4. Sims and Geweke 
Model (see Table 5) clearly analyze that call/put implied volatility can cause the 
realized volatility and realized volatility cannot cause the implied volatility. It 
is also confirmed for the average implied volatility and, found that there is only 
unidirectional causality hold between implied and realized volatility. Based on 
this uncomplicated result it is concluded that Indian options market is an efficient 
market and incorporates all the recent information in the option prices. An ex- ante 
volatility obtained from options pricing model is the efficient forecast of the future 
realized return volatility. This result also confirms to the other options market of 
the globe like CBOE, NYSE, OEX, ASX, ADEX etc. The Causality result on the 
combined measures of implied volatility is reported in the third line of the respective 
Causality tables. The result shows that average implied volatility Granger Causes 
the realized volatility and the nature of causality is unidirectional.

In this study two different measures of ex –post realized return volatility are 
calculated. It is clearly seen from the Granger Table 4 the null “HV does not 
Granger Causes CIV” is accepted; the same is true for put implied volatility as 
well as combined implied volatility. Therefore, Granger Causality test suggest that 
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historical volatility cannot be the best estimate of the future realized return volatility. 
Call and put implied volatility are the measure of current market volatility and best 
subsumes the information about future volatility. 

All Granger Causality result analyze that call and put implied volatility cannot 
cause to each other. It is because of the assumptions of constant volatility of the 
BSOPM. In option pricing model single annualized volatility is used to price both 
the call and put options. Therefore, volatility predicted from call and put price should 
be identical. Granger6 and Geweke et.al Causality model (see Table 5) supports the 
hypothesis “PIV does not Granger Causes CIV” and “CIV does not Granger Causes 
PIV”.

Conclusion

This study deals with the market efficiency of the OPTIDX CNX Nifty Index 
options. Implied volatilities are calculated for at-the-money non-overlapping 
monthly call and put options. The empirical results show that Indian options 
market is an efficient market that subsumes all the important information about the 
future volatility. This is a more comprehensive study in the Indian context based on 
causality analysis and employed three different approaches for non-overlapping at-
the-money implied volatilities. It is concluded that call/put implied volatilities are 
the best estimate of future realized return volatility. It is also analyzed from the OLS 
estimation that historical volatility does not contain any significant information 
about the realized volatility what already contained in the options price. Granger 
Causality test concludes that there is only unidirectional causality prevails between 
implied volatility and realized volatility. Implied volatility can only causes the 
realized volatility; realized volatility cannot cause the implied volatility. One of 
the important result obtained from Granger test that historical volatility cannot 
cause the realized volatility. Finally, it is concluded that Indian options market is 
an efficient market and the volatility estimates based on option pricing model are 
the best forecast of the future volatility. This study can be useful for the volatility 
traders in the pricing of derivative instruments and portfolio risk management.
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